
International Journal on Emerging Technologies (Special Issue on ICRIET-2016) 7(2): 244-247(2016)

 ISSN No. (Print) : 0975-8364

 ISSN No. (Online) : 2249-3255

A Study on Different Deadlock Avoidance Strategies in Distributed
Real Time Embedded Systems

Prashant Hebbale*, Raju Hebbale** and Santosh Kolaki*

*Asst. Professor, Department of Electronics & Communication Engineering, VSMIT, Nipani

**Asst. Professor, Department of Electronics & Communication Engineering, KLECET, Chickodi

(Corresponding author: Prashant Hebbale)

(Received 28 September, 2016 Accepted 29 October, 2016)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In this paper we discuss about the resource management in distributed real time embedded

systems. The deadlocks, missed deadlines, priority inversion problems are due to the incorrect handling of

resources. Deadlock avoidance will provide the correct handling of resources. All the protocols will first check

the availability of resource. If resources are available then only RTOS will allocate resource else it will not. In
avoidance technique at any time the resource will be in safe state only. The general solutions may not give the

efficient deadlock avoidance strategies. In this paper different protocols are presented that will give efficient

deadlock avoidance methods. The condition to use these different protocols will be the system should not have

circular dependencies.

In deadlock prevention the deadlock is made unreachable. The resource is blocked and none of process can

access it but it will reduce performance and it will restrict execution. But in avoidance technique deadlock is

avoided by different protocols. Avoidance of deadlock will provide the efficient resource handling.

Detection of deadlock and preventing it will be offline process. During offline deadlocks are detected and

allocation of resources will be calculated and according to requirements available resources will be given. In

RTOS offline process will not be effective because resource requirements cannot be known prior. Deadlock

avoidance technique will be effective technique for RTOS. Different deadlock avoidance protocols will

provide different level of concurrency and less execution time. All protocols in deadlock avoidance will ensure
deadlock free system.

Key words: Basic P, Live P, Deadlock.

I. INTRODUCTION

A real-time system is a system that must satisfy

explicit (bounded) response-time constraints or risk

severe consequences including failure.

In real-time systems logical correctness is based on

both the correctness of output and their timeliness

[1][5] .

Deadlock:
Necessary conditions for deadlock:

1. Mutual exclusion

2. Circular wait

3. Hold and wait

4. No preemption

The resources which can’t be shared with others will

create mutual exclusion. The process which has

cyclic processing will create circular wait. The

process which request resources and lock those

resources until all its required resources are filled will

create hold on wait. Partially allocated semaphores

may create no preemption problem.

Different methods to deal with deadlock:
1. Prevention

2. Avoidance

3. Detection

In first method the deadlock is made unreachable. It

is done by locking the resource. The allocated
resource will be blocked and none other can use that

resource. The prevention can be done if we know the

resources availability prior. But in real time

embedded system this will not be possible and it will

restrict the execution.

In second method different protocols or algorithms

are used to avoid deadlock. All protocols are on

assumption that circular dependency is absent.

 In third method deadlock condition will be

calculated in offline and it will be corrected.

et

 Hebbale, Hebbale and Kolaki 245

 If the detection and prevention will take more time

then it will not be efficient. For example in gaming

system if deadlock may come once in year it may

hang it will not be a serious problem by rebooting

system it can be overcome.

Different approaches to avoid deadlock:
1. Statically break circular wait
 This will reduce the resource use and

concurrency will be reduced. The programmer has to

check all the situation of circular wait and he has to

eliminate it.

2. Release some resources and go back to previous

state

This can be done in databases. It is not applicable to

real time embedded systems. If done then timely

response can’t be provided.

3. Dynamically allocating the resources which are

free will not give efficient resource allocation [2].

Different deadlock avoidance models are:
1. Dijkstra’s Banker’s algorithm

2. Adequate P

3. Basic P

4. Efficient P

5. K-Efficient P

6. Live P

1. Dijkstra’s Banker’s algorithm:

The Bankers algorithm is based on the maximum

resources available by each task and resource

availability at current instant. It is based on static and

dynamic knowledge of resource availability.
Banker’s algorithm will satisfy the need of resources

available to processes satisfactorily. This algorithm

will ensure that the number of resources required will

never exceed the number of resources available for

the system.

Algorithm example:

Consider system having 4 processes P, Q, R and S

and total of 15 resources. The max requirement of

each resource is 7, 7, 4 and 5 respectively. The

resource requirements are as shown in table 1. Here

requirements of all processes can be met. The system

will be in safe state.

Table 1: Resource requirements of different

process.

Process Max

req

Requirement

at this

instant

Used Possibly

need

P 7 0 0 7

Q 7 0 0 7

R 4 0 0 4

S 5 0 0 5

Total availability 15

 At each time resources required the OS will update

this table to ensure deadlock free system.

 Let resource required by processes at first

instant be 2,3,1,1 respectively. All these resources

can be allocated so system is in safe state. The

allocation of resources is as shown in table 2. Then

the table will be updated as

Table 2: Usage of resources.

Process Max

req

Requirement

at this instant

Used Possibly

need

P 7 2 2 5

Q 7 3 3 4

R 4 1 1 3

S 5 1 1 4

Total availability 8

 Let resource required by processes at this

instant be 2,2,1,1 respectively, this is as shown in

table 3. All these resources can be allocated so
system is in safe state.

Then the table will be updated as

Table 3: After allocation of resources.

Process Max

Req

Requirement

at this instant

Used Possibly

need

P 7 2 4 3

Q 7 2 5 2

R 4 1 2 2

S 5 1 2 3

Total availability 2

In the above table only the requirements of P,Q or R

can be met. The requirement of S can't be met. For

the Process S it will be unsafe state for other
processes it is safe state [5][6].

Let resource required by processes at this instant be

1,0,0,0 respectively, this is shown in table 4.

Table 4: Resource allocation.

Process Max

req

Requirement

at this

instant

Used Possibly

need

P 7 1 5 2

Q 7 0 5 2

R 4 0 2 2

S 5 0 2 3

Total availability 1

 Hebbale, Hebbale and Kolaki 246

At this stage none of the process can get possible

needed resources so the system is unsafe state. During

unsafe state the system will not allocate resources to

any of the processes. If any system releases the

resources at that time the table will be updated and

again check for safe state and allocate resources.

 The Bankers algorithm will ensure the safe state
of system it is slow for real time embedded system. In

this the resources needed by process must be known

priori. But in real time system the availability of

resources needed may not be known priori.

Protocols: There are different protocols available to

avoid deadlock. These protocols will check the

availability of resources and ensure dead lock free

system. The simple protocol schema is given bellow.

 When Enn (Vr) Entry section

 Inn(Vr,Vr’)

 f() ; Function

 Outn(Vr,Vr’) Resource release

Fig. 1. Protocol Schema.

Let

In- is entry section of process,

Out- is exit section of process,

En- is enabling condition of process,

Vr- is resources available,

Vr'- resources available after execution of process,
n - is method of function execution.

Enn(Vr) be the enabling condition for process to

execute. the process is executing in method n and

checking for resource availability Vr if the resource is

available then the that process will be allocated

resources and further execution of process will take

place. Soon after the enabling condition next step will

be to update the resources available after allocating

resource to method n. This will be indicated by Vr'.

After this the process execution will take place. After

executing, process must give resources back which it

has allocated. The resource Vr' will become Vr. If at the
entry section only the resource has not available then

further process will not be done.

Adequate P: Adequate protocol is one in which the

number of resources allocated in every task should

never exceed the total number of available resources[2].

Adequacy must be there for each and every protocol.

The non available resources can't be allocated if

allocated then that will lead to deadlock. At each time if

resources available are greater than zero then the

resource will be allocated to process and remaining

resource availability will be updated.

Computational Model:
Example of deadlock

 Fig. 2. Computational model.

 => This symbol indicates deadlock

 => This symbol indicates resource allocation

In above example each task has 2 resources. At last step

both the task will not be satisfied so they are

deadlocked. In this situation both the tasks tA and tB will

not get resources and they will be deadlocked.

Basic P: The correctness of Basic P protocol is based

on the acyclicity of the process. When resources are

request then the protocol will check availability of

resources and then allocate it. After allocation all the

resources are not given to that process immediately.

Once the process is complete the resource will be given

back that is it will be released and Tr will be increased.
The Basic P algorithm is as shown in fig 3.

 When i ≤ tr Entry section

 Tr --

 f() ; Function

 Tr ++ Resource release

Fig. 3. Protocol Basic P.

 Hebbale, Hebbale and Kolaki 247

At entry section Tr will be updated and after execution

of process Tr is updated again so that resource available

can be used by other process’s.

Efficient P: The Basic P can be improved by increasing

the annotation levels which will lead to Efficient P

protocol. Efficient P uses another local variable to track
thread availability [4].

 When Φ(n) ≤ Pr and 1 ≤ tr do

 { Pr--, tr-- }

 f() ;

 { Pr++,tr++}

Fig. 4. Protocol Efficient P.

Both the potentially available threads and actually
available threads are used in this protocol. During

resource allocation both the conditions are checked, the

efficient P is as shown in fig 4. If both conditions are

satisfied then the resource will be provided and further

function will proceed. Pr and Tr are the two variables.

Concurrency will be improved as compared to Basic-P

protocol.

K Efficient P:

 When Φ(n) ≤ Pr and χ(k) ≤ tr do
 { Pr--, tr-- }

 f() ;

 { Pr++,tr++}

Fig. 5. Protocol K Efficient P.

The k is strengthening point. Figure 5 shows the

scheme of K efficient P protocol. Lower the value of k

will indicate the less computation needed to check

enabling condition. If k = 0 then the protocol will same
as Basic P protocol. K will provide the strength to the

resource allocation. In Basic P protocol single counter

is used where as in K Efficient P many counters are

used. The increment or decrement of resource is done

independent of tr.

Live P: Resource allocation is controlled in Live P

protocol. The correct implementation of Live P will

ensure the deadlock situation and also liveness.

Implementation of Live P will prevent starvation. Every

waiting process is enabled if it satisfies the entry

condition of Live P. Figure 6 shows the protocol

schema Live-P that controls resource allocation for a

method n.

 When ΦA
(i) do Entry section

 ActA(i) ++

 f () ; Function

 ActA(i) ++ Resource release

Fig. 6. Protocol Live P.

IV. CONCLUSION

All the Protocols explained above are based on the

principle that processes are not cyclic. All the protocols

will ensure the process doesn’t have deadlock situation.
These will prevent deadlock efficiently.

 In this paper we present an algorithm to compute

optimal annotations that is annotations that maximize

parallelism while satisfying the condition of acyclicity.

Moreover, we show that the condition of acyclicity is in

fact tight and exhibits a rather surprising anomaly: if a

cyclic dependency is present in the annotation of the

call graph and a certain minimum number of threads is

provided, deadlock is reachable. Thus, in the presence

of cyclic dependencies, increasing the number of

threads may introduce the possibility of deadlock in an
originally deadlock free system.

REFERENCES

[1]. Cesar Sanchez, “Deadlock Avoidance for Distributed

Real-Time and Embedded Systems”, Computer Science And

The Committee, Stanford University, May 2007.
[1]. Cesar Sanchez, Henny B. Sipma, and Zohar Manna, “A

Family of Distributed Deadlock Avoidance Protocols and

their Reachable State Spaces”, Computer Science
Department.
[1]. Kai Han, “Scheduling Distributed Real-Time Tasks in

Unreliable and Untrustworthy Systems”, Virginia Polytechnic
Institute and State University, September 18, 2007.

[1]. Cesar Sanchez, Henny B. Sipma, Christopher D. Gill, and
Zohar Manna1, “Distributed Priority Inheritance for Real-

Time and Embedded Systems”, Stanford University.
[1]. Raj Kamal, “Embedded systems Architecture,

Programming and Design”, TMH.
[1]. Philip. A. Laplante, “Real-Time Systems Design and

Analysis- an Engineer’s Handbook”-Second Eition, PHI
Publications.

